A Multi-objective Particle Swarm Optimizer Enhanced with a Differential Evolution Scheme
نویسندگان
چکیده
Particle swarm optimization (PSO) and differential evolution (DE) are meta-heuristics which have been found to be very successful in a wide variety of optimization tasks. The high convergence rate of PSO and the exploratory capabilities of DE make them highly viable candidates to be used for solving multi-objective optimization problems (MOPs). In previous studies that we have undertaken [2], we have observed that PSO has the ability to launch particles in the direction of a leader (i.e., a non-dominated solution) with a high selection pressure. However, this high selection pressure tends to move the swarm rapidly towards local optima. DE, on the other hand, seems to move solutions at smaller steps, yielding solutions close to their parents while exploring the search space at the same time. In this paper, we present a multi-objective particle swarm optimizer enhanced with a differential evolution scheme which aims to maintain diversity in the swarm while moving at a relatively fast rate. The goal is to avoid premature convergence without sacrificing much the convergence rate of the algorithm. In order to design our hybrid approach, we performed a series of experiments using the ZDT test suite. In the final part of the paper, our proposed approach is compared (using 2000, 3500, and 5000 objective function evaluations) with respect to four state-of-the-art multi-objective evolutionary algorithms, obtaining very competitive results.
منابع مشابه
A Particle Swarm Optimizer for Multi-Objective Optimization
This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions propos...
متن کاملA Multi-objective Evolutionary Hybrid Optimizer
A new hybrid multi-objective, multivariable optimizer utilizing Strength Pareto Evolutionary Algorithm (SPEA), Non-dominated Sorting Differential Evolution (NSDE), and Multi-Objective Particle Swarm (MOPSO) has been created and tested. The optimizer features automatic switching among these algorithms to expedite the convergence of the optimal Pareto front in the objective function(s) space. The...
متن کاملEMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency
This paper presents the Efficient Multi-Objective Particle Swarm Optimizer (EMOPSO), which is an improved version of a multiobjective evolutionary algorithm (MOEA) previously proposed by the authors. Throughout the paper, we provide several details of the design process that led us to EMOPSO. The main issues discussed are: the mechanism to maintain a set of well-distributed nondominated solutio...
متن کاملA Multi-objective Particle Swarm Optimizer Hybridized with Scatter Search
This paper presents a new multi-objective evolutionary algorithm which consists of a hybrid between a particle swarm optimization (PSO) approach and scatter search. The main idea of the approach is to combine the high convergence rate of the particle swarm optimization algorithm with a local search approach based on scatter search. We propose a new leader selection scheme for PSO, which aims to...
متن کاملMicro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size
In this chapter, we present a multi-objective evolutionary algorithm (MOEA) based on the heuristic called “particle swarm optimization” (PSO). This multi-objective particle swarm optimizer (MOPSO) is characterized for using a very small population size, which allows it to require a very low number of objective function evaluations (only 3000 per run) to produce reasonably good approximations of...
متن کامل